Stereoselection in the Prins-Pinacol Synthesis of Acyltetrahydrofurans

Frederick Cohen, David W.C. MacMillan, Larry E. Overman,* and Alex Romero

Department of Chemistry, 516 Rowland Hall, University of California, Irvine, California 92697-2025

Supporting Information

A. Representative Experimental Procedures¹

Preparation of rel.(2S,4R,5S)-4-Ethenyl-4,5-dimethyl-2-isopropyl-1,3**dioxolane (6a).** A solution of a 6:1 mixture of *anti*- and *syn*-3-methyl-4-penten-2,3-diols² (820 mg, 7.10 mmol), isobutyraldehyde (2.5 g, 35 mmol), MgSO₄ (15 g), CH₂Cl₂ (140 mL), and p-TSOH (130 mg, 0.68 mmol) was stirred at rt for 4 h before being poured into saturated aqueous NH₄Cl (50 mL). The resulting layers were separated and the aqueous layer was extracted with CH_2Cl_2 (2 × 100 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated. The residue was purified by silica gel chromatography (20:1 hexanes-EtOAc) to give a 6:1 mixture of acetals **6a** and **6s** (900 mg, 74%) as a colorless oil. The major stereoisomer **6a** was separated by preparative MPLC (silica gel, 100:1 hexanes-EtOAc): ¹H NMR (500 MHz, CDCl₃) δ 5.75 (dd, J =10.7, 11.1 Hz, 1H), 5.23 (dd, J = 15.9, 1.6 Hz, 1H), 5.13 (dd, J = 9.1, 1.6 Hz, 1H), 4.70 (d, J = 5.2 Hz, 1H), 3.77 (q, J = 6.4 Hz, 1H), 1.86-1.67 (m, 1H), 1.32 (s, 3H), 1.13 (d, J = 6.4 Hz, 1H), 1.86-1.67 (m, 1H), 1.32 (s, 3H), 1.13 (d, J = 6.4 Hz, 1H), 1.86-1.67 (m, 1H), 1.32 (s, 3H), 1.13 (d, J = 6.4 Hz, 1H), 1.86-1.67 (m, 1H), 1.32 (s, 3H), 1.13 (d, J = 6.4 Hz, 1H), 1.86-1.67 (m, 1H), 1.32 (s, 3H), 1.13 (d, J = 6.4 Hz, 1H), 1.86-1.67 (m, 1H), 1.32 (s, 3H), 1.13 (d, J = 6.4 Hz, 1H), 1.86-1.67 (m, 1H), 1.32 (s, 3H), 1.13 (d, J = 6.4 Hz, 1H), 1.86-1.67 (m, 1H), 1.32 (s, 3H), 1.13 (d, J = 6.4 Hz, 1H), 1.86-1.67 (m, 1H), 1.32 (s, 3H), 1.13 (d, J = 6.4 Hz, 1H), 1.86-1.67 (m, 1H), 1.32 (s, 3H), 1.13 (d, J = 6.4 Hz, 1H), 1.86-1.67 (m, 1H), 1.32 (s, 3H), 1.13 (d, J = 6.4 Hz, 1H), 1.86-1.67 (m, 1H), 1.32 (s, 3H), 1.13 (d, J = 6.4 Hz, 1H), 1.86-1.67 (m, 1H), 1.32 (s, 3H), 1.13 (d, J = 6.4 Hz, 1Hz), 1.86-1.67 (m, 1Hz), 1.32 (s, 3Hz), 1.13 (d, J = 6.4 Hz), 1.13 (d, J = 6.46.4 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.96 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 139.5, 114.2, 106.3, 81.5, 81.3, 32.1, 22.5, 17.2, 17.1, 15.4; IR (film) 3015, 2977, 2933, 2874, 1473, 1412, 1384, 1108, 1006, 925 cm⁻¹; HRMS (EI) m/z 169.1229 (M–H, 169.1229 calcd for $C_{10}H_{17}O_2$). Anal. Calcd for $C_{10}H_{18}O_2$: C, 70.55; H, 10.66. Found: C, 70.70; H, 10.67.

¹ General experimental details have been described: Metais, E.; Overman, L. E.; Rodriguez, M. I.; Stearns, B. A. *J. Org. Chem.* **1997**, *62*, 9210–9216.

² Hopkins, M. H.; Overman, L. E.; Rishton, G. M. J. Am. Chem. Soc. **1991**, 113, 5354–65.

Rearrangement of Acetals with SnCl₄. Preparation of rel-(2S,3S,5R)-1-(2,3-Dimethyl-5-isopropyl-3-tetrahydrofuranyl)ethanone (13b) from Anti Acetal 7a. A CH₂Cl₂ solution of SnCl₄ (0.16 mL, 1.0 M) was added to a solution of anti acetal **7a** (27 mg, 0.15 mmol, 97% purity³) and CH₂Cl₂ (15 mL) at -78 °C. After 17 h, the solution was poured into saturated aqueous NH₄Cl (10 mL) and the resulting layers were separated. The aqueous phase was extracted with CH_2Cl_2 (2 × 50 mL) and the combined organic layers were dried (MgSO₄), filtered, and concentrated. The resulting residue was purified by silica gel chromatography (20:1 hexanes–EtOAc) to afford tetrahydrofurans 13b and 12b (26 mg, 96%) as a 92:8 mixture³. The major stereoisomer 13b was separated by preparative MPLC (silica gel, 20:1 hexanes–EtOAc): ¹H NMR (500 MHz, CDCl₃) δ 4.20 (q, J = 6.2 Hz, 1H), 3.78 (app ABq, J = 8.1, 7.3 Hz, 1H), 2.19 (s, 3H), 2.04 (m, 1H),1.87 (dd, J = 6.5, 6.5 Hz, 1H), 1.74 - 1.67 (m, 1H), 1.20 (s, 3H), 1.16 (d, J = 6.3 Hz, 3H),0.97 (d, J = 6.6 Hz, 3H), 0.86 (d, J = 6.7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 210.7, 82.0, 77.6, 57.9, 41.4, 33.7, 26.5, 19.2, 17.9, 16.7, 15.4; IR (film) 2961, 2874, 1704, 1469, 1384, 1358, 1237, 1085, 1023, 902, 869, 601 cm⁻¹; HRMS (EI) m/z, 184.1463 (M, 184.1463 calcd for $C_{11}H_{20}O_2$). Anal. Calcd for $C_{11}H_{20}O_2$: C, 71.70; H, 10.94. Found: C, 71.61; H, 10.89.

Rearrangement of Acetals with Trifluoromethanesulfonic Acid. Preparation of rel-(2S,3R,5S)-1-(2-Methyl-5-isopropyl-3-tetrahydrofuranyl)ethanone (12a) from Syn Acetal 6s. A CH₂Cl₂ solution of TfOH (0.60 mL, 0.5 M, 0.30 mmol) was added to a solution of syn acetal **6s** (17 mg, 0.10 mmol, >99% purity by capillary GLC analysis)³ and CH₂Cl₂ (12 mL) at -78 °C and the reaction was maintained at this temperature for 14 h before being poured into saturated aqueous NaHCO₃ (5 mL). The resulting layers were separated and the agueous phase was extracted with CH_2Cl_2 (2 × 5 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated. The resulting residue was purified by silica gel chromatography (20:1 hexanes–EtOAc) to give **12a** (15 mg, 90%) as a single diastereomer³: ¹H NMR (500 MHz, CDCl₃) δ 4.29 (dq, J = 6.5, 1.6 Hz, 1H), 3.50 (app ABq, J = 7.4, 7.5 Hz, 1H), 3.26 (app ABq, J = 8.3, 8.4 Hz, 1H), 2.15 (s, 3H), 1.95-1.91 (m, 2H), 1.78-1.71 (m, 1H), 1.08 (d, J = 6.5 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H), 0.88 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 207.9, 84.9, 75.1, 55.8, 33.3, 31.1, 30.8, 19.6, 18.5, 17.9; IR (film) 2960, 2873, 1714, 1469, 1382, 1385, 1244, 1168, 1096, 1042, 908 cm⁻¹; HRMS (EI) m/z 170.1303 (M, 170.1306 calcd for $C_{10}H_{18}O_2$). Anal. Calcd for C₁₀H₁₈O₂: C, 70.55; H, 10.66. Found: C, 70.67; H, 10.61.

³ GLC analyses were conducted with a Hewlett-Packard 5890 series II gas chromatograph equipped with a 30 m x 0.32 mm J&W DB-5 column and a flame ionization detector.

B. ¹H NOE Data for Tetrahydrofuran Stereoisomers 12 and 13.

$$(C2)Me$$
 $H(2)$
 $H(5)$
 $(C2)Me$
 $H(2)$
 $H(5)$
 $(C2)Me$
 $H(2)$
 $H(5)$
 $(C3)$
 $(C2)Me$
 $H(2)$
 $H(5)$
 $(C3)$
 $(C3)$
 $(C4)$
 $(C4)$
 $(C5)$
 $(C5)$
 $(C2)$
 $(C3)$
 $(C3)$
 $(C3)$
 $(C4)$
 $(C3)$
 $(C4)$
 $(C4)$
 $(C5)$
 $(C5)$
 $(C6)$
 $(C6)$
 $(C7)$
 $(C7)$

R	compd	¹ H DNOE enhancements ^a		
Н	12a	H(2)/H(3),(5)	$Me(C2)/CHMe_2^b$	
Me	12b	Me(C3)/H(2),(5)	H(2)/H(5)	
Н	13a	Me(C2)/H(3),(5)	H(3)/H(5)	
Me	13b	Me(C2)/Me(C3)	H(5)/Me(C3)	

^aFor each entry, each hydrogen signal was separately irradiated to give the corresponding enhancements. With methine hydrogen of the *i*-sopropyl group.

12d: $R^1 = R^2 = H$ **13d**: $R^1 = R^2 = H$ **12e**: $R^1 - R_2 = (CH_2)_3$ **13e**: $R^1 - R_2 = (CH_2)_3$

\mathbb{R}^{1}	\mathbb{R}^{2}	compd	¹ H DNOE enhancements ^a	
Н	Н	12d	H(2)/H(3),(5)	H(5)/H(3)
$(CH_2)_3$		12e	H(7)/H(4),Me(C2)	H(2)/H(5)
Н	Н	13d	Me(C2)/H(3),(5)	
$(CH_2)_3$		13e	H(7)/H(2),(4)	Me(C2)/H(5)

^aFor each entry, each hydrogen signal was separately irradiated to give the corresponding enhancements.